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Abstract We consider the molecular Born-Oppenheimer

potential energy as a function of atomic Cartesian coordi-

nates and discuss the non-stationary Hessian properties

arising due to rotational symmetry. A connection with the

extended Hessian theory is included. New applications of

Cartesian representation for examining and correcting raw

numerical Hessian data and a simple formulation of har-

monic vibrational analysis of partially optimized systems

are proposed. Exemplary calculations for the porphyrin

molecule with an internal proton transfer are reported. We

also develop the normal transformation method to incor-

porate the rotational symmetry into the approximate

analytical potentials, which are parametrized in the

Cartesian coordinates. The transformation converts the

coordinates from the space fixed frame to the frame which

translates and rotates with the molecule and is determined

by the Eckart conditions. New simple analytical formulas

for the first and second derivatives of the transformed

potential are derived. This fast method can be used to

calculate the potential and its derivatives in the simulations

of chemical reaction dynamics in the space fixed Cartesian

frame without the need to constrain the molecular rotation

or to define the local non-redundant internal coordinates.

Keywords Potential energy surface � Hessian �
Rotations � Cartesian coordinates

1 Introduction

In the dynamics of chemical reactions, one often approxi-

mates the Born-Oppenheimer potential energy by an

analytical function of the atomic coordinates. Such

approximations allow for fast computing of the atomic

forces in the classical dynamics, as well as of the higher

derivatives which are useful e.g., in semi-classical Gaussian

wave packets dynamics [1, 2]. Analytical potentials are in

practice necessary for modeling the full quantum dynamics

of the nuclei, for instance the proton transfer quantum

dynamics [3], and for the mixed dynamical models with

quantum description of the proton(s) and classical

description of other nuclei, see e.g. [4, 5]. In the mixed

models one needs an efficient method for ‘‘on the fly’’

computation of the whole potential energy surface for

protons at instantaneous positions of the classical nuclei. To

describe the evolution of the protonic quantum wave

function, one may also need to localize the minima on the

instantaneous protonic potential energy surface, and to

determine the corresponding local normal modes, what

makes the analytical second derivatives important. One of

the analytical approximations of the potential, which can

be used for the above purposes, is the modified Shepard

interpolation, see e.g. [6–9]. It is based on the local Taylor

expansions of the exact potential with respect to the

atomic coordinates, and the expansions are centered in the

stationary and non-stationary configurations which sample

the dynamically accessible space. The values and deriva-

tives of the exact potential in the expansion centers can be

obtained from the high level ab initio or density functional

electronic calculations. The expansions are usually limited

to the local harmonic approximation (LHA) because only

the first and second analytical derivatives are available from

the high level calculations. A similar parameterization
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strategy based on LHAs can be implemented in the

approximate valence bond potential (AVB, see e.g. [10])

and the AVB/LHA approach is currently being developed

by the author and coworkers for intramolecular proton

transfer. The motivation for the current study arose from the

need for some auxiliary parameterization tools.

The simplest representation for the local Taylor expan-

sion of the potential are the Cartesian coordinates,

especially in case of large number of atoms. Unfortunately,

a model potential expressed with the Cartesian LHA or the

Shepard interpolation of several Cartesian LHAs is not

invariant under molecular rotations, what should be the case

for an isolated molecule. The problem is due to the fact that

rotations of a molecule with fixed internal configuration and

fixed center of mass yield a compact hypersurface in the

multidimensional space of the atomic Cartesian coordi-

nates, while the Cartesian LHA is constant on a hyperplane

which represents local directions of infinitesimal rotations.

The problem can be avoided by using the internal coordi-

nates but then the computational simplicity is lost and some

other limitations appear. For instance, when using the

conventional Z-matrix representation one has to ensure the

local, complete and non-redundant set of valence coordi-

nates for a particular molecular topology, and to deal with

complicated analytical derivatives, including the singularity

problems. Furthermore sometimes it is difficult to define

non-reduntant valence coordinates consistently with the

molecular point symmetries. Other local, non-redundant,

internal coordinates that avoid the symmetry problem can

be constructed based on the reciprocal inter-atomic dis-

tances [8, 9]. Their additional advantage is a correct

qualitative behavior of LHA both at small and large inter-

atomic separations what allows to describe molecular

association and dissociation [6, 9]. Unfortunately, inter-

atomic distances are not complete coordinates for planar

molecular geometries [9]. It follows that the Cartesian

coordinates remain an interesting option for the bound

systems with internal reactions, especially when planar

geometries are involved, as in case of the aromatic mole-

cules with internal proton transfer. In order to extend the

validity of LHA one may also use special curvilinear

valence coordinates [11] for selected reactive degrees of

freedom (e.g. for the mobile protons) and retain the simple

Cartesian representation for the rest of the molecule.

When parameterizing the potential in Cartesian coor-

dinates one needs special tools for reproducing the

molecular rotational symmetry. This symmetry is reflected

in particular in the gradient and Hessian properties which

can be accounted for even in the simplest LHA. It is a

common approach to project out the spurious translational

and rotational components from the Hessian in the sta-

tionary geometries. In this study, we extend this approach

to the non-stationary case, allowing for correcting of raw

numerical data which can be used in non-stationary LHA

parameterization, and for normal mode analysis of par-

tially optimized system. We also consider a method for

ensuring rotational invariance of the potential described

with an arbitrary analytic function of Cartesian coordi-

nates. One of so-far proposed approaches to this problem

was a generalization of the modified Shepard interpolation

based on the invariant integral over molecular orientations

[7]. Analytical derivatives of such potential were derived

but are computationally very expensive. A rotation

invariant potential can be also obtained in a simple way

by transforming the molecule to a definite position and

orientation prior to calculating the analytical function in

the Cartesian coordinates. The orientation can be defined

based on three atoms of the molecule [12, 13]. In this

study, we consider a more general transformation, which

both conserves the molecular point symmetries and pro-

vides inexpensive analytical first and second derivatives

in Cartesian coordinates, which are simpler than those

resulting from transforming from internal to Cartesian

coordinates. Our approach can be applied to construct the

total potential energy of an isolated molecule, as well as

the intramolecular contribution to the total potential

energy of a molecule in solution. The approximate

potential can be combined with the classical, semi-clas-

sical, or mixed quantum-classical equations of motion for

the atomic nuclei in the space fixed Cartesian frame,

without the need of separating out the molecular rotations

and translations.

2 Gradient and Hessian properties in Cartesian

coordinates

Let V(r) be the Born-Oppenheimer potential energy of

an isolated molecule, where r is the 3N-dimensional

column vector of mass scaled Cartesian coordinates of

N atomic nuclei. We use auxiliary notation r ¼
f ffiffiffiffiffi

mi
p

RigN
i¼1; where Ri are Cartesian vectors and mi are

atomic masses. Mass-scaling is irrelevant for the pro-

perties of the potential itself but it is included to

simplify the further vibrational analysis. The translational

and rotational symmetry can be expressed with the

equation [14],

VðrtrðrÞÞ ¼ VðrÞ; ð1Þ

where r ? rtr represents a molecular rotation or

translation. In the latter case, we set rtrðrÞ ¼ rþ tðKÞ;
where tðKÞ ¼ f ffiffiffiffiffi

mi
p

KgN
i¼1 and K is a Cartesian vector.
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Expanding (1) into Taylor series with respect to K; and

separating out the term of the first order, we derive

gðrÞTtðKÞ ¼ 0: ð2Þ

Here g(r)T = qV/qr is the gradient vector in a transposed

(row) form. Differentiating the earlier equation with

respect to r we further obtain

ĥðrÞtðKÞ ¼ 0; ð3Þ

where ĥðrÞ ¼ og=or is the Hessian matrix. Consider now

that r ? rtr is a rotation, which can be also parameterized

with a vector K whose modulus and orientation represent

the clockwise rotation angle and the rotation axis,

respectively. For convenience we assume that the rotation

axis passes through the molecule’s center of mass. The

rotation can be expanded into the Taylor series with respect

to K;

rtrðrÞ ¼ rþ ûðKÞr0 þ OðK2Þ; ð4Þ

where r0 ¼ f ffiffiffiffiffi

mi
p

R0ig
N
i¼1 denotes coordinates relative to the

molecular center of mass,

R0i ¼ Ri �
1

M

X

N

j¼1

Rj; M ¼
X

N

i¼1

mi; ð5Þ

and ûðKÞr0 ¼ fK� ffiffiffiffiffi

mi
p

R0ig
N
i¼1 describes the linear

component of the rotation (i.e., direction vector of the

infinitesimal rotation). Substituting (4) in (1) and repeating

the procedure as in case of (2) we derive,

gðrÞTûðKÞr ¼ 0: ð6Þ

In the last equation we omitted, based on (2), the

translation to the center of mass. Differentiating (6) with

respect to r and taking into account that û ¼ �ûT we

obtain,

ĥðrÞûðKÞr ¼ ûðKÞgðrÞ: ð7Þ

A particular form of this equation in case of planar mole-

cule and in-plane rotation was discussed in [15]. Equations

equivalent to (2–3) and (6–7) were also obtained in a more

general group theoretical formulation [16].

The earlier results can be formulated in the orthonormal

basis of translation and rotation vectors. Following a con-

ventional procedure (see e.g. [17]), we determine Cartesian

unit vectors, KkðrÞ; which describe principal axes of

molecular inertia tensor, and the corresponding moments of

inertia, Ik (k = 1, 2, 3)

X

N

i¼1

mi R02i Kk � R0iðR0Ti KkÞ
� �

¼ IkKk: ð8Þ

In the case of degenerated moments, Ik = Il, we additionally

apply the orthogonality condition, KT
k Kl ¼ dkl: It is

hereafter assumed that N [ 2 and that the molecule is

non-linear what ensures that all three Ik moments are non-

zero. The corresponding orthonormal translation and

rotation vectors are (k = 1, 2, 3),

tkðrÞ ¼
tðKkÞ
ffiffiffiffiffi

M
p ; ekðrÞ ¼

ûðKkÞr0
ffiffiffiffi

Ik

p : ð9Þ

One also defines the vibrational projection matrix p̂;

p̂ðrÞ ¼ ı̂�
X

3

k¼1

ðekeT
k þ tktT

k Þ; ð10Þ

where ı̂ denotes the 3N-dimensional identity matrix. Notice

that in case of linear molecules one could define the

projection matrix with three translational and two

rotational vectors, however, a general expression is

missing which could encompass both linear and non-

linear cases. The projection in the form p̂ĥp̂ is commonly

applied in quantum chemistry to the Hessians in the

stationary configurations. We extend this approach to the

non-stationary case and combine Eqs. (2–3), (6) and (7)

together to the following form,

g ¼ p̂g; ð11Þ

ĥ ¼ p̂ĥp̂þ dĥg; ð12Þ

where we denoted the gradient-dependent Hessian

component,

dĥg ¼
X

3

k¼1

fkeT
k þ ekfT

k

� �

�
X

3

k;l¼1

ekðeT
k f lÞeT

l ; ð13Þ

and an auxiliary vector (k = 1, 2, 3),

fk ¼
ûðKkÞg
ffiffiffiffi

Ik

p : ð14Þ

Equations (11–14) describe the rotational and translational

symmetry of the potential derivatives in Cartesian coordi-

nates in the general case of non-stationary geometry. It can

be deduced from (12) that in contrast to the projected

Hessian, p̂ĥp̂; the full non-stationary Hessian, ĥ; may have

up to three non-zero rotational eigenvalues [15, 18]. For a

simple algebraic description of this phenomenon in a dia-

tomic molecule the reader may see e.g. [22]. Furthermore,

the fk vectors may have both the rotational and the vibra-

tional components, (el
Tfk and p̂fk; respectively, where k,

l = 1, 2, 3), what destroys the separation into the pure

vibrational and rotational eigenvectors in non-stationary

geometries.

The Cartesian Hessian can be also considered as a

special case of a more general Riemannian representation.

Let r = r(q), where q = {qi}i=1
3N are locally complete gene-

ralized coordinates, for instance the internal and external

(rotation and translation) coordinates. Given the potential

function, U(q) = V(r(q)), one defines the covariant second

Theor Chem Account (2008) 121:257–266 259

123



derivatives, also refered to as the extended Hessian [19, 20]

or simply the Hessian [21, 22] (i, j, k B 3N),

Hij ¼ ðUÞij � Ck
ijðUÞk: ð15Þ

Here the abbreviation (�)i = q(�)/qqi and the Einstein

summation are used. Other denotations are: the Christoffel

symbol of the second kind, Cij
k = Gnk[(Gni)j ? (Gnj)i-

(Gij)n]/2, the metric tensor, Gnk = (r)n
T(r)k, the inverse ten-

sor, Gnk. Applying the chain rule for U derivatives, and

taking into account a property (r)ij = (r)kC
k
ij, one can

transform (15) into a simple relation which links the

Riemannian and Cartesian Hessians, Hij ¼ ðrÞTi ĥðrÞj:When

using the Riemannian representation one can determine the

set of 3N frequencies, m, and generalized normal mode

vectors, v, from the equation Hijv
j
k = m2

kGijv
j
k, see e.g. [19].

It can be checked that the same frequencies result from

the Cartesian normal mode equation, ĥvk ¼ m2
kvk; and that

vk = (r)ivk
i . The above considerations are valid for arbitrary

complete coordinates q, and they confirm that the extended

Hessian’s spectrum is coordinate-independent [21, 22]. The

r(q) transformation can be defined in a particular way so

that p̂ðrÞi ¼ ðrÞi for internal coordinates (i B 3N - 6) and

p̂ðrÞi ¼ 0 for external coordinates (i = 3N - 5,...,3N), see

e.g. [24]. In this case, the Cartesian projected Hessian, p̂ĥp̂;

corresponds to the internal block of H, whereas the com-

ponent dĥg corresponds to the rotational and rotational-

internal elements of H. The extended Hessian can be used

for coordinate-invariant analysis of the potential surface in

non-stationary geometries including quantum zero-point

correction [20], the steepest descent path [21] and the

instantaneous normal mode analysis of liquid dynamics [22,

23]. The above problems can be considered either in the full

space of internal and external coordinates or in the internal

subspace, which is equivalent with using ĥ or p̂ĥp̂;

respectively.

3 Applications in the non-stationary Hessian analysis

The preceding section described the case of ideal potential,

where the Hessian’s rotational components are due to a

non-zero gradient. However, the raw gradient and Hessian

data generated by computer programs for quantum che-

mistry may include also spurious translational and

rotational components which are due to numerical errors.

Given the raw Hessian, ĥr; one can eliminate its compo-

nents of the latter type and derive the symmetry-corrected

Hessian in the general case of non-stationary geometry

ĥg ¼ p̂ĥrp̂þ dĥg; ð16Þ

where dĥg is calculated from (13–14) using the symmetry-

corrected gradient, p̂gr: The corrected Hessian can be used

for analyzing of the quantum potential surface, as well as

for parameterizing the approximate analytical potentials as

discussed in the next section. The earlier formula is a

generalization of the projected Hessian, ĥp ¼ p̂ĥrp̂; which

is used in the standard vibrational analysis in the stationary

geometries. In the standard analysis, one often performs a

preliminary calculation to check whether the rotational and

translational frequencies of the raw Hessian are close to

zero, what indicates that stationary geometry was suffi-

ciently optimized [25]. This test can be extended by

analyzing also the ĥg matrix, which reveals the rotational

components due to the incomplete optimization but

excludes the components caused by numerical errors. If the

rotational frequency magnitudes of ĥg are as large as those

of ĥr; then the vibrational analysis can be improved by

more accurate geometry optimization. The above approach

can be also applied to Hessians obtained from molecular

mechanics or coarse-grained potentials for molecular

clusters and macromolecules.

Another potential application of Eq. (12) is the normal

mode analysis of partially optimized systems. Consider a

non-optimized system with all fixed atoms apart from those

in a small subsystem. The subsystem can be optimized and

be subject of the vibrational analysis. For simplicity we

assume that atoms in the optimized part are labelled with

i B n (n \ N). The normal mode analysis can be performed

in the 3n-dimensional configuration subspace of the opti-

mized subsystem what is equivalent to analyzing the

following 3N-dimensional Hessian,

ĥ0 ¼ fhijg3n
i;j¼1 0

0 0

� �

: ð17Þ

The zero elements can be interpreted as resulting from

infinite atomic masses in the non-optimized part of the

molecule. In the partial Hessian vibrational analysis (PHVA)

the projected matrix, ĥP ¼ p̂ĥ0p̂; is further derived in order

to exclude the contributions of the overall rotations and

translations from the partial modes and from related

quantities, such as vibrational enthalpy and entropy [26].

The use of the projection operator is not quite consistent with

the assumption of infinite atomic masses in the non-

optimized part of the system. This problem is avoided in

the mobile block Hessian (MBH) approach where the non-

optimized part is treated as a rigid body composed of atoms

with finite masses and moving with respect to the optimized

part [16, 27]. The approach was first formulated in the

internal coordinates, and later in the Cartesian representation

based on the group theoretical concepts [16]. Another and

simpler formulation in the Cartesian representation is

presented below. Let dr denote a small time-dependent

deformation from the fixed configuration r. The Lagrangian

in the LHA is,
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Lðdr; d _rÞ ¼ 1

2
jd _rj2 � VðrÞ þ gTdrþ 1

2
drTĥdr

� �

: ð18Þ

We introduce the generalized rectilinear coordinates, q ¼
fqig3n

i¼1; which describe deformations in the optimized part

excluding the contributions from the molecular rotations

and translations,

drðqÞ ¼ p̂niq
i: ð19Þ

Here ni denotes a constant 3N-dimensional vector with all

coordinates equal to 0, except for the ith coordinate which

is equal to 1, and hereafter we use the Einstein summation

in the range 1,...,3n. From the partial optimization it

follows that gTdr (q) = 0. Substituting (19) to (18) we

derive,

Lðq; _qÞ ¼ 1

2
pij _qi _qj � V � 1

2
Hijq

iqj; ð20Þ

where pij ¼ nT
i p̂nj are the elements of the projection

matrix, which here plays the role of the constant metric

tensor, and Hij ¼ nT
i ðp̂ĥp̂Þnj are the elements of the partial

Hessian (i, j B 3n). Based on Eq. (12) we substitute p̂ĥp̂ ¼
ĥ� dĥg; and by taking into account that ni

Tfk = 0 (i B 3n,

k B 3), we obtain a practical formula (i, j B 3n),

Hij ¼ hij þ
X

3

k;l¼1

ekieljðeT
k f lÞ; ð21Þ

where eki denote elements of the ek vectors. From (20) we

derive the normal mode equation for the vibrational

frequencies, m, and generalized normal mode vectors, v (i,

j, k B 3n),

Hijv
j
k ¼ m2

kpijv
j
k: ð22Þ

The solution is obtained in the transformed representa-

tion ~Hij~v
j
k ¼ m2

k ~vj
k; where ~H ¼ p�

1
2Hp�

1
2; and ~v ¼ p

1
2v: The

corresponding 3N-dimensional normal mode vectors are

vk ¼ p̂niv
i
k ðk� 3nÞ: The results are equivalent to those

arising from the earlier formulations of the MBH

method. Notice that the present approach can be also

applied to the optimized fragments in macromolecules

without the need to determine and diagonalize the full

multi-dimensional Hessian. The methods discussed in

this section can be also applied to the protonic

energy surface at instantaneous non-stationary positions

of heavy atoms in the molecule, as presented further in

this study.

4 Cartesian potential invariant under rotations

The Born-Oppenheimer potential energy of an isolated

molecule can be approximated in a limited domain in the

configuration space with an expression,

VinvðrÞ ¼ VcðrnðrÞÞ; ð23Þ

where Vc(r) is an analytical function of atomic Cartesian

coordinates, and rn(r) is hereafter called the normal

transformation which includes translation and rotation of

the molecule to a definite position and orientation,

rnðrÞ ¼ ŵðr0Þr0 ¼ f ffiffiffiffiffi

mi
p

Ŵðr0ÞR0ig
N
i¼1: ð24Þ

Here the prime sign denotes a translation according to Eq.

(5) and ŴðrÞ is a three-dimensional orthogonal matrix

which describes a finite rotation of vectors in the Cartesian

frame. The function ŴðrÞ is designed to make the normal

transformation to be invariant under the rotation of r. In

one of the approaches the rn(r) transformation yields a

definite relative orientation of selected three atoms in the

molecule [12] but this choice is not convenient for

calculating the Cartesian derivatives and may violate the

symmetry of the potential energy surface around a

configuration with a point symmetry. Another solution is

to set the principal axes of the molecular tensor of inertia

in directions of the reference Cartesian system. The

corresponding rotation matrix has a simple ðK1;K2;K3Þ
form, however, this method is problematic when molecular

inertia tensor has degenerated eigenvalues and indefinite

principal axes. In order to obtain an unambiguous

and continuous transformation we chose the rotation

matrix ŴðrÞ; which minimizes the configuration distance

d2 ¼ jrnðrÞ � r0j2;where r0 is a fixed reference

configuration such that r0

0
= r0. Minimizing d2 with

respect to elements of the rotation matrix under the

orthogonality constraint, Ŵ�1 ¼ ŴT; yields the following

equation [7],

ŜŜT
� 	1

2

Ŵ ¼ Ŝ; ð25Þ

where Ŝ denotes an auxiliary matrix,

Ŝ ¼
X

N

i¼1

miR0iR
T
i ; ð26Þ

and R0i are atomic Cartesian vectors in configuration r0.

The square root in (25) is calculated by taking the positive

roots of all eigenvalues of the ŜŜT matrix what corresponds

to the proper rotation [7]. Notice that in case of planar

configurations one eigenvalue is zero. In practice it is

convenient to determine the ŴðrÞ elements from two

equations, which result from the projection of Eq. (25) on

the directions of the two eigenvectors of ŜŜT corresponding

to highest eigenvalues, and from the third equation repre-

senting the orthogonality condition. This method provides

numerically smooth results for both planar and non-planar

configurations.

By definition ŴðrnðrÞÞ is the identity matrix, and in this

case Eq. (25) reads Ŝ ¼ ŜT what is equivalent to,
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X

N

i¼1

miR0i � ðRni � R0iÞ ¼ 0; ð27Þ

where Rni are atomic Cartesian vectors in configuration

rn(r). Equation (27) together with (r - r0)0 = 0 are known

as the Eckart conditions [14, 28]. The rn(r) vector

represents the mass-scaled atomic Cartesian coordinates

in a molecule-fixed frame, which is determined by the

molecular normal axes [14], and hence we use the name of

the normal transformation. Calculating and rearranging

scalar triple products of Eq. (27) with vectors Kkðr0Þ; we

get an equivalent equation (k = 1, 2, 3),

ekðr0ÞTðrnðrÞ � r0Þ ¼ 0; ð28Þ

which is essential for obtaining analytical derivatives of the

normal transformation. The latter are described with a

matrix, â ¼ orn=or matrix, and a tensor of rank 3, b̂ ¼
oâ=or; which are calculated in the Appendix. Derivatives

of the invariant potential can be calculated using the chain

rule,

ginv ¼ âTgc; ð29aÞ

ĥinv ¼ âTĥcâþ b̂Tgc; ð29bÞ

where gc
T = qVc(r)/qr and ĥc ¼ ogcðrÞ=or: The matrix

transposition in (29a) is consistent with the expression for

elements of the ginv vector, qVinv/qri = (qrn/qri)
Tgc, where

ri (i = 1,...,3N) are elements of r. Calculating the

derivatives of the invariant potential can be simplified

based on a property which can be derived from considering

the molecular translation and rotation in the space fixed

Cartesian frame, r! r0 ! rnðrÞ ¼ ŵr0: During this

transformation the atomic force vectors related with a

rotation invariant potential should behave like ginvðrÞ ¼
ginvðr0Þ ! ginvðrnðrÞÞ ¼ ŵginvðrÞ: This reasoning can be

also used for the Hessian eigenvectors, and we derive that,

ginvðrÞ ¼ ŵTginvðrnðrÞÞ; ð30aÞ

ĥinvðrÞ ¼ ŵTĥinvðrnðrÞÞŵ; ð30bÞ

where ŵT ¼ ŵ�1 is the inverse rotation. It follows that it is

sufficient to determine quantities â and b̂Tgc in the

configuration rn(r), what is shown in the Appendix. with

the final results given in Eqs. (42–43). The corresponding

form of (29b) in a configuration such that rn(r) = r is,

ĥinv ¼ âTðĥc � dĥgÞâþ dĥg; ð31Þ

where dĥg is the gradient-dependent Hessian component

(13–14) corresponding to the gradient ginv. Expressions

(29a), (31) and (30a, 30b) are used to compute the ana-

lytical gradient and Hessian of the invariant potential

Vinv(r) at arbitrary configuration r. In a configuration such

that rn(r) = r an additional relation, aTp̂ ¼ p̂ can be

derived from (42). One can further show that if gc and ĥc

have correct rotational symmetry then the Eqs. (29a) and

(31) yield ginv = gc and ĥinv ¼ ĥc; respectively, what

implies that the normal transformation does not disturb the

Hessian and gradient parameterization in the LHA.

According to the discussion following Eq. (41) in the

Appendix, the normal transformation is differentiable if the

rotation vectors ek (r) are linearly dependent on the vectors

ek(r0) (k = 1, 2, 3). This condition is satisfied for geo-

metries r which are close to the reference geometry r0,

what makes the current approach useful for describing

vibrations and intramolecular chemical reactions which do

not deform substantially the overall molecular shape cor-

responding to r0 (see the example in the next section). In

general, it is convenient to select r0 with the highest point

group symmetry that can be assumed by the molecule. If

the system includes two or more protons which may

exchange the positions during dynamics, one can set the

same R0 location for protons, so as the normal transfor-

mation is invariant under the exchange. If the dynamics

involves excessive changes of molecular conformation, one

may use the normal transformation with multiple local

reference configurations. Such approach can be consis-

tently implemented in the modified Shepard interpolation

and other methods which are also based on combining the

multiple local approximations of the potential.

5 Examples

The methods derived in this study were tested on an iso-

lated porphyrin molecule in the ground electronic state.

Porphyrin serves as a prototype for a family of molecules

which play an important role in many biological processes,

including the tautomerization, and are subject of intense

studies, for review see e.g. [29]. The Gaussian program

[30] was used to obtain stationary configurations and

analytical derivatives with the B3LYP/6-31G(d,p) method

and with standard setup of other parameters for electronic

calculations. Porphyrin has two mobile protons which can

move between four nitrogen atoms. The global minimum

of the potential is in the trans (t) configuration with protons

bound to a and c, or equivalently b and d nitrogen atoms,

see Fig. 1. The potential has also local minima in the cis (c)

configuration, with protons located in neighbour sites (a
and b or b and c etc), and the transitions states, tc and tt,

corresponding to single and double proton transfers from t

to c and from t to t states, respectively. All these states have

planar geometry. In Table 1, we reported the residual

gradients and the rotation frequency magnitudes in the

stationary configurations including various approximations

of t obtained with coarse, tight or very tight (vtight) opti-

mizations. Notice that the rotation frequencies of the raw
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Hessian (mr
rot) are due to the numerical errors in the elec-

tronic calculations as well as due to the non-zero residual

gradient. The numerical factor is dominant and is respon-

sible for the rotational frequencies of magnitude 5–

10 cm-1 at all tested optimization levels. In contrast, the

frequencies of the corrected Hessian (mg
rot) are due to the

gradient only and are less than 1 cm-1 for all tightly

optimized configurations. The translation frequencies are

negligible (below 0.05 cm-1) in all cases. We also calcu-

lated the optimization-dependent vibrational frequency

errors from the projected Hessians in approximate t con-

figurations using as a reference the vtight spectrum. The

results are presented in Table 1 and show that the vibra-

tional spectrum has already converged at tight

optimization. Similar results were also obtained for the

finite difference Hessian at tight t optimization,

mr
rot = 5.5 cm-1 and Dmp

vib = 0.4 cm-1.

The exemplary non-stationary configuration, t0, was

constructed from t by moving the protons from a and c to b
and d nitrogens. The protonic coordinates were further

locally optimized at fixed locations of other atoms, so as

the ring geometry could not adapt to the modified proto-

nation state, yielding the total gradient |g| = 5 9 10-2 au.

The spectra of the ĥr; ĥg and ĥp Hessians in the t0 config-

uration differ only in the lowest frequency range, which is

presented in Table 2. The corresponding modes of the full

and projected Hessians were assigned by finding eigen-

vectors pairs with high overlap, |vg
T vp|2. Notice that the two

projected vibrational modes, -69.9 and 23.8 cm-1, couple

with the rotational modes and yield four rovibrational

modes. In particular, the 23.8 cm-1 mode which represents

a planar deformation promoting the proton transfer, see

Fig. 2, is coupled with the rotation in the plane of the

molecule and has the highest rotational symmetry correc-

tion (Dmng = 5 cm-1). The t0 configuration can be also

considered as a result of the ring deformation of t, where

the protons are bound to b and d nitrogens. The deforma-

tion is only of about 0.1 Å in positions of nitrogens and

protons, but has a considerable effect on the frequencies,

compare mp(t0) and mp(t) data in Table 2. On the other hand,

the corresponding modes have very high overlap,

|vp
T(t0)vp(t)|2 [ 0.96, except of the two mode pairs shown

first in Table 2, which are cross-coupled. We further

examined to what extent the non-stationary spectrum of

ĥgðt0Þ can be reproduced by using a single LHA potential

centered in the t configuration, and the normal transfor-

mation. The approximate Hessian in t0 is given with Eq.

(31) where ĥcðt0Þ ¼ ĥpðtÞ and gcðt0Þ ¼ ĥpðtÞ½rðt0Þ � rðtÞ�;
and its frequencies, mg

LHA(t0), are presented in Table 2.

Notice that although the qualitative scheme of rovibrational

coupling in t0 is reproduced by the invariant LHA, the

frequencies mg(t0) are not, what is due to high

NγNα

Nβ

Nδ

HH

Fig. 1 Porphyrin in one of the equivalent trans (t) configurations

Table 1 Gradient norms, |g|, rotational frequency magnitudes, mrot,

and vibrational frequency errors, Dmvib (in cm-1), in the stationary

configurations

Config. |g| [au] mr
rot mg

rot Dmp
vib

c tight 7 9 10-6 9.9 0.6 –

tc tight 8 9 10-6 5.8 0.7 –

tt tight 1 9 10-5 7.3 0.5 –

t coarse 2 9 10-3 6.8 4.9 7.2

t coarse 2 9 10-4 4.9 1.5 0.7

t tight 1 9 10-5 4.7 0.4 0.0

t vtighta 2 9 10-6 4.7 0.2 0a

The rotational frequencies were obtained from the ĥr; and ĥg Hessians

and the vibrational frequencies from the ĥp Hessian
a Reference for vibrational frequencies

Table 2 Rovibrational frequencies (mg), symmetry corrections (Dmrg

= mr - mg) and the projected vibrational frequencies (mp) in t0 and t, as

well as the approximate rovibrational frequencies derived in t0 from

the t-centered LHA (see text for details)

mg(t0) Dmrg(t0) mp(t0) mp(t) mg
LHA (t0)

-104.6 0.0 -104.6 95.1 95.1

100.5 0.0 100.5 55.5 55.5

-91.0 -0.2 -69.9 133.3 -61.2

-25.2 0.2 134.7

-15.0 -5.1 23.8 98.9 7.7

26.9 2.5 99.0

18.3 0.0 18.3 66.7 66.7

35.2 0.2 0.0 0.0 13.5

The imaginary frequencies are shown as negative numbers
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anharmonicity of the lower part of the spectrum. We also

tested that the mg
LHA(t0) frequencies are in practice insensi-

tive (effect less than 1 cm-1) on choice of the reference

configuration, r0, including stationary states and a sym-

metrized D4h configuration with two indistinguishable

protons located in the central point.

As an example of the partial vibrational analysis, in

Table 3 we presented the protonic normal mode frequen-

cies in configurations t and t0. The full protonic mode

frequencies, m, were obtained from the full Hessians ĥpðtÞ
and ĥgðt0Þ: The partial protonic modes were determined for

the subspace of six protonic Cartesian coordinates using

PHVA and MBH methods, and the resulting vibrational

frequencies are denoted with labels P and M, respectively.

Notice that M frequencies are in general higher than the

P frequencies, what is in agreement with the results

reported for the ethanol molecule [27], however, the

maximum difference is only 22 cm-1 for the antisym-

metric NH bond stretching. Furthermore, the plain partial

Hessian (Eq. 17) yields the protonic frequencies which are

intermediate between the P and M values in the same

configuration. Eliminating the contribution from rotations

and translations has a minor effect on the protonic partial

modes in the current example due to the disproportion

between the protonic and molecular mass.

6 Summary

The molecular Hessian in the mass scaled atomic Cartesian

coordinates can be expressed as the sum of the projected

vibrational Hessian and of the gradient dependent compo-

nent, which follows from the molecular rotational

symmetry (12–14). The gradient-dependent component is

responsible for additional pseudo-frequencies and mixing

of the rotational and vibrational normal modes in the non-

stationary configurations. The non-stationary normal

modes can be equivalently determined from the known

theory of the extended Hessian in the generalized coordi-

nates (15). The Cartesian Hessian expression (12) can be

used to correct the raw Hessian data resulting from the

quantum chemistry or molecular mechanics calculations in

the non-stationary configurations, as well as to qualify the

spurious rotational components in the stationary configu-

rations. Exemplary results for porphyrin presented in

Table 1 show that tightening the optimization cannot

reduce the rotational frequencies beyond a limit related

with the numerical accuracy of electronic calculations.

Table 2 shows to what extent one can correct the non-

stationary Hessian, and that ensuring the rotational

invariance of the Cartesian LHA does not help to reproduce

anharmonic effects which are observed in the lower part of

the spectrum. This shall not prevent one from using pos-

sibly precise Hessian data for parameterizing LHAs,

because the anharmonicity can be reproduced by interpo-

lating nearby LHAs, adding higher order expansion terms

or introducing curvilinear coordinates.

The expression (12) was also used in a simple formu-

lation of the partial normal mode analysis in the Cartesian

representation. The method can be applied to determine

harmonic normal modes of an optimized molecular frag-

ment excluding the contributions from the molecular

rotations and translations. The method requires calculating

the subblock of the projection matrix (10) and of the mass-

scaled Hessian matrix, eliminating the gradient-dependent

component (21) and solving the generalized normal mode

equation (22), and yields results equivalent to the mobile

block Hessian approach [16, 27]. Table 3 shows to what

Table 3 Partial protonic frequencies obtained with PHVA and MBH

methods (mP and mM, respectively) and the full protonic frequencies (m)

in t0 and t configurations

vm mP(t0) mM(t0) m(t0) mP(t) mM(t) m(t)

o- 477 478 498 627 628 631

o? 706 710 727 754 759 748

p- 988 988 924 1,154 1,155 1,262

p? 1,073 1,080 955 1,204 1,212 1,269

s- 3,437 3,459 3,575 3,421 3,444 3,558

s? 3,510 3,510 3,631 3,479 3,479 3,601

The NH bond vibration modes (vm) are: bending out of the plane (o),

bending in the plane (p), stretching (s) with symmetric (?) or anti-

symmetric (-) protons’ motion

Fig. 2 The projected vibrational mode, mp = 23.8 cm-1, promoting

the proton transfer in t0 configuration
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extent the protonic frequencies in porphyrin depend on

separation of protons and heavy atoms, optimization of the

skeleton, and exclusion of the rotations. These results

indicate possible inaccuracy of molecular dynamics simu-

lations with separation into the quantum and classical

descriptions for the protons and heavy atoms, respectively.

The normal transformation method was developed for

computing the analytical potential energy in the atomic

Cartesian coordinates preserving the molecular rotational

symmetry. The method is based on molecular reorientation

which maximizes the geometry overlap with a reference

configuration [7] what appears equivalent to satisfying the

Eckart conditions. Given an instantaneous molecular con-

figuration in the space fixed frame one derives an auxiliary

rotation matrix from (25, 26) and applies (24) to transform

the molecule to a definite position and orientation in which

the analytical potential (23) is calculated. The method can

be applied with the potentials of arbitrary analytical form

and allows for molecular dynamics computations in the

space fixed Cartesian frame without constraining the

molecular rotations but avoiding the internal coordinates.

Novel and simple formulas for the analytical Cartesian

derivatives of the transformed potential were provided. To

obtain the gradient in the space fixed frame one determines

the auxiliary rotation vectors (41) and the projection-like

matrix (42) and applies transformations (29a) and (30a) to

the gradient of the analytical potential. To obtain the second

derivatives one determines the gradient-dependent Hessian

component (13) and applies transformations (31) and (30b).

The normal transformation is currently being implemented

to the approximate valence bond method for the molecular

classical and quantum dynamics of proton transfer reactions

in the porphyrin molecule and its derivatives.
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Appendix: Analytical derivatives of the normal

transformation

For simplicity we consider a configuration r which is in

the normal position and orientation, i.e., rn(r) = r. We

define two auxiliary configurations. r1 = r ? kx, and

r2 = r1 ? k0x0, where k and k0 are independent smallness

parameters, and x and x0 are arbitrary vectors in the con-

figuration space. Notice that in the present context the

prime symbol does not denote the center of mass transla-

tion. Since rn(r) is smooth, we can use the Taylor

expansion,

rnðr1Þ ¼ rþ kâxþ O2; ð32aÞ

rnðr2Þ ¼ rnðr1Þ þ k0âx0 þ kk0ðb̂xÞx0 þ O2: ð32bÞ

Symbol O2 denotes any terms which are of at least second

order in k or k0. To determine the inner products of â and b̂

with the x(0) vectors, we first notice that rn(r) is invariant

under rotations and translations of r. Substituting x0 = tk(r)

and rn(r2) = rn(r1) in (32b) and separating terms of different

orders in k’s we obtain âtk ¼ 0 and b̂tk ¼ 0 ðk ¼ 1; 2; 3Þ:
Next, assume that r2 = r1 ? k0x0 is a rotation of r1 by the

angle k0 around the axis Kk ¼ KkðrÞ ðk ¼ 1; 2; 3Þ; what

corresponds to x0 ¼ ûðKkÞr1 þ OðK0Þ: Substituting the

earlier expression to (32b) and separating the terms of

different orders we derive âek ¼ 0; b̂ek ¼ �âûk ðk ¼
1; 2; 3Þ; where ek = ek(r) and ûk ¼ ûðKkÞ=

ffiffiffiffi

Ik

p
: The

results obtained so far can be combined together as follows,

âx ¼ âp̂x ð33aÞ

ðb̂xÞx0 ¼ ðb̂p̂xÞp̂x0 �
X

3

k¼1

âûk xðeT
k x0Þ þ x0ðeT

k xÞ
� �

; ð33bÞ

where x and x0 are arbitrary vectors. To determine the inner

products of â and b̂ with the vibrational components, p̂xð0Þ;
we consider the case r2 = r ? dr, where dr ¼ kp̂xþ k0p̂x0:
The r2 conformation is now in the normal position but not

necessarily in the normal orientation. The latter, rs(r2), is

obtained by some rotation of r2 around the molecular center

of mass. The rotation axis and angle is described with a

direction and norm, respectively, of a Cartesian vector

KðdrÞ; and rn(r2) can be expanded into the Taylor series,

rnðr2Þ ¼ r2 þ ûðKÞr2 þ
1

2
ûðKÞ2r2 þ OðK3Þ: ð34Þ

The K vector can be represented as a linear combination of

the KkðrÞ vectors defined in (8), and, consequently, we

apply a linear combination for the û matrix,

ûðKðdrÞÞ ¼
X

3

k¼1

ckðdrÞûk; ð35Þ

where ûk ¼ ûðKkÞ=
ffiffiffiffi

Ik

p
and ckðdrÞ ¼

ffiffiffiffi

Ik

p
KT

k KðdrÞðk ¼
1; 2; 3Þ: Substituting the earlier expression for dr in

ck(dr), we further introduce the expansion with respect to

parameters k(0) (k = 1, 2, 3),

ckðdrÞ ¼ akkþ a0kk
0 þ bkkk0 þ O2; ð36Þ

where ak, ak

0
and bk are some unknown coefficients. We

dropped the zero-order term in (36) taking into account that

ûðKðdrÞÞ should be zero for dr = 0. We substitute

Eqs. (35–36) to (34) and obtain an expansion of rn(r2)

with respect to k(0) parameters. Notice that an equivalent

expansion should obtained by replacing x(0) with p̂xð0Þ

in (32a, 32b). By comparing the corresponding terms,
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proportional to k(0) or kk0, from the two expansions we

obtain,

âp̂xð0Þ ¼ p̂xð0Þ þ
X

3

k¼1

eka
ð0Þ
k ; ð37Þ

or

ðb̂p̂xÞp̂x0 ¼ cþ
X

3

k¼1

ekbk; ð38Þ

respectively. Here we use the auxiliary denotation,

c ¼
X

3

k¼1

ûkp̂ðakx0 þ a0kxÞ;þ1

2

X

3

k;l¼1

ðaka
0
l þ a0kalÞûlek: ð39Þ

In order to determine the coefficients ak
(0) and bk we make

use of the Eckart condition (28), which can be presented in

the form,

ekðr0ÞT rnðr2Þ � rnðr1Þ½ � ¼ 0: ð40Þ

Substituting (32a–32b) into the earlier equation and

separating the terms of different orders in k’s we get

ekðr0ÞTâxð0Þ ¼ 0 and ekðr0ÞTðb̂xÞx0 ¼ 0 ðk ¼ 1; 2; 3Þ; for

arbitrary vectors x(0). Applying these conditions to (37–38)

we derive a system of linear equations for ak
(0) and bk

(k = 1, 2, 3). The solution can be represented as að0Þk ¼
�eT

k vð0Þ and bk ¼ �eT
k c; where

ek ¼
X

3

l¼1

Eklelðr0Þ; ð41Þ

are auxiliary vectors, and Ekl are coefficients defined with

the condition eT
k en ¼ dkn ðk; n ¼ 1; 2; 3Þ: Notice that the

last condition can be fulfilled only if the ek
Tel(r0) matrix is

invertible, what imposes some limitations on the allowed r

configurations at given reference configuration, r0.

Substituting the earlier expressions for ak
(0) and bk to

(37–39) and further substituting (37–39) to (33a–33b) we

obtain complete expressions for âx and ðb̂xÞx0: These

expressions are further differentiated with respect to x and

x0 yielding the target quantities â and b̂: Due to limitations

in the notation it is more convenient to derive the

expression for the symmetric matrix b̂Tgc ¼ gT
c b̂ instead

of the bare b̂ tensor. The results, upon some algebraic

simpliciations, can be presented as,

â ¼ ı̂�
X

3

k¼1

eke
T
k �

X

3

k¼1

tktT
k ; ð42Þ

and

gT
c b̂ ¼ dĥg � âTdĥgâ; ð43Þ

where dĥg is the gradient-dependent Hessian component

(13–14) evaluated for the gradient ginv ¼ âTgc:
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